Pulsatile urea excretion in the gulf toadfish: mechanisms and controls.
نویسندگان
چکیده
Opsanus beta expresses a full complement of ornithine-urea cycle (OUC) enzymes and is facultatively ureotelic, reducing ammonia-N excretion and maintaining urea-N excretion under conditions of crowding/confinement. The switch to ureotelism is keyed by a modest rise in cortisol associated with a substantial increase in cytosolic glutamine synthetase for trapping of ammonia-N and an upregulation of the capacity of the mitochondrial OUC to use glutamine-N. The entire day's urea-N production is excreted in 1 or 2 short-lasting pulses, which occur exclusively through the gills. The pulse event is not triggered by an internal urea-N threshold, is not due to pulsatile urea-N production, but reflects pulsatile activation of a specific branchial excretion mechanism that rapidly clears urea-N from the body fluids. A bidirectional facilitated diffusion transporter, with pharmacological similarity to the UT-A type transporters of the mammalian kidney, is activated in the gills, associated with an increased trafficking of dense-cored vesicles in the pavement cells. An 1814 kB cDNA ('tUT') coding for a 475-amino acid protein with approximately 62% homology to mammalian UT-A's has been cloned and facilitates phloretin-sensitive urea transport when expressed in Xenopus oocytes. tUT occurs only in gill tissue, but tUT mRNA levels do not change over the pulse cycle, suggesting that tUT regulation occurs at a level beyond mRNA. Circulating cortisol levels consistently decline prior to a pulse event and rise thereafter. When cortisol is experimentally clamped at high levels, natural pulse events are suppressed in size but not in frequency, an effect mediated through glucocorticoid receptors. The cortisol decline appears to be permissive, rather than the actual trigger of the pulse event. Fluctuations in circulating AVT levels do not correlate with pulses; and injections of AVT (at supraphysiological levels) elicit only minute urea-N pulses. However, circulating 5-hydroxytryptamine (5-HT) levels fluctuate considerably and physiological doses of 5-HT cause large urea-N pulse events. When the efferent cranial nerves to the gills are sectioned, natural urea pulse events persist, suggesting that direct motor output from the CNS to the gill is not the proximate control.
منابع مشابه
Molecular characterization of a urea transporter in the gill of the gulf toadfish (Opsanus beta).
Urea excretion by the gulf toadfish (Opsanus beta) has been shown in previous studies to be a highly pulsatile facilitated transport, with excretion probably occurring at the gill. The present study reports the isolation of an 1800 base pair (kb) cDNA from toadfish gill with one open reading frame putatively encoding a 475-residue protein, the toadfish urea transporter (tUT). tUT, the first tel...
متن کاملCortisol-sensitive urea transport across the gill basolateral membrane of the gulf toadfish (Opsanus beta).
Gulf toadfish (Opsanus beta) use a unique pulsatile urea excretion mechanism that allows urea to be voided in large pulses via the periodic insertion or activation of a branchial urea transporter. The precise cellular and subcellular location of the facilitated diffusion mechanism(s) remains unclear. An in vitro basolateral membrane vesicle (BLMV) preparation was used to test the hypothesis tha...
متن کاملBranchial and renal handling of urea in the gulf toadfish, Opsanus beta: the effect of exogenous urea loading.
The objective of this study was to determine whether the pulsatile facilitated diffusion transport mechanism (tUT) found in the gills of the gulf toadfish (Opsanus beta) and the active secretion transporter thought to be present in its kidney could be saturated when faced with elevated plasma urea concentrations. Toadfish were infused with four consecutive exogenous urea loads at a rate of 0, 1...
متن کاملDogmas and controversies in the handling of nitrogenous wastes: 5-HT2-like receptors are involved in triggering pulsatile urea excretion in the gulf toadfish, Opsanus beta.
When injected arterially, serotonin (5-hydroxytryptamine; 5-HT) has been shown to elicit naturally sized urea pulse events in the gulf toadfish, Opsanus beta. The goal of the present study was to determine which 5-HT receptor(s) was involved in mediating this serotonergic stimulation of the pulsatile excretion mechanism. Toadfish were surgically implanted with caudal arterial catheters and intr...
متن کاملThe regulatory role of glucocorticoid and mineralocorticoid receptors in pulsatile urea excretion of the gulf toadfish, Opsanus beta.
Gulf toadfish, Opsanus beta, are one among a group of unusual teleosts that excrete urea as their predominant nitrogen end product in response to stressful conditions. Under conditions of crowding or confinement, fasted toadfish excrete the majority of their nitrogen waste in large pulses of urea (>90% of total nitrogen) lasting up to 3 h. An earlier study demonstrated that cortisol has an inhi...
متن کاملEffects of feeding and confinement on nitrogen metabolism and excretion in the gulf toadfish Opsanus beta
In order to elucidate further the cues for, and the biochemical mechanisms of, the transition to ureogenesis in the gulf toadfish Opsanus beta, experiments on the effects of feeding (i.e. nitrogen loading) were carried out. Baseline nitrogen excretion rates were first measured on solitary toadfish in large water volumes (i.e. unconfined conditions). These nitrogen excretion rates were higher, a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology
دوره 136 4 شماره
صفحات -
تاریخ انتشار 2003